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Abstract We consider the problem of detection and track-
ing of multiple people in crowded street scenes. State-of-
the-art methods perform well in scenes with relatively few
people, but are severely challenged by scenes with many sub-
jects that partially occlude each other. This limitation is due
to the fact that current people detectors fail when persons
are strongly occluded. We observe that typical occlusions
are due to overlaps between people and propose a people
detector tailored to various occlusion levels. Instead of treat-
ing partial occlusions as distractions, we leverage the fact that
person/person occlusions result in very characteristic appear-
ance patterns that can help to improve detection results. We
demonstrate the performance of our occlusion-aware person
detector on a new dataset of people with controlled but severe
levels of occlusion and on two challenging publicly available
benchmarks outperforming single person detectors in each
case.

Keywords Pedestrian detection - Tracking -
Multiple people tracking - Occlusion handling

1 Introduction

Single people detectors such as the powerful deformable part
models (DPM, Felzenszwalb et al. 2010) have shown promis-
ing results on challenging datasets. However, it is well known
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that current detectors fail to robustly detect people in the
presence of significant partial occlusions. In fact, as we ana-
lyze in this paper, the DPM detector starts to fail already at
about 20 % of occlusion and beyond 40 % of occlusion the
detection of occluded people becomes mere chance. Several
methods, i.e. tracking and 3D scene reasoning approaches,
have been proposed to track people even in the presence of
long-term occlusions. Although these approaches allow us to
reason across potentially long-term and full occlusions, they
still require that each person is sufficiently visible at least
for a certain number of frames. In many real scenes, how-
ever, e.g. when people walk side-by-side across a pedestrian
crossing (see Fig. 1), a significant number of people will be
occluded by 50 % and more for the entire sequence.

To address this problem this paper makes three main con-
tributions. First, we propose a new double-person detector
that allows us to predict bounding boxes of two people even
when they occlude each other by 50 % or more as well as a
new training method for this detector. This approach outper-
forms single-person detectors by a large margin in the pres-
ence of significant partial occlusions (Sect. 3). Second, we
propose a joint person detector that is jointly trained to detect
single- as well as two-people in the presence of occlusions.
This joint detector achieves state-of-the-art performance on
challenging and realistic datasets (Sect. 4). Last, we integrate
the above joint model into a tracking approach to show its
potential for people detection and tracking occluded people
(Sect. 5).

2 Related Work
Recent methods to track people (Huang et al. 2008; Wu and

Nevatia 2007; Breitenstein et al. 2009; Andriyenko et al.
2012) employ people detectors to generate initial tracking
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Fig. 1 Detection results at equal error rate obtained with the approach
of Barinova et al. (2010) (fop) and our joint detector (bottom) on the
TUD-Crossing Andriluka et al. (2008) dataset. False-positive detec-

hypotheses, and they often include elaborate strategies to link
people tracks across occlusion events. However, they typi-
cally fail to track people that remain significantly occluded
for the entire sequence. To overcome this limitation we pro-
pose a people detection approach that can detect and predict
the position of even severely occluded people. State-of-the-
art approaches to people detection (Dollér et al. 2009; Felzen-
szwalb et al. 2010) are able to reliably detect people under a
variety of imaging conditions, people poses, and appearance.
Although they are effective when people are fully visible,
their performance degrades when people become partially
occluded. Various remedies have been proposed, including
a combination of multiple detection components (Felzen-
szwalb et al. 2010), using a large number of part detectors
(Poselets) (Bourdev and Malik 2009), detection of inter-
actions between persons and objects (Desai and Ramanan
2012), and careful reasoning about association of image evi-
dence to detection hypotheses (Leibe et al. 2005; Barinova
et al. 2010; Wang et al. 2009). Leibe et al. (2005) proposed
an approach that first aggregates evidence from local image
features into a probabilistic figure-ground segmentation and
then relies on an MDL formulation to assign foreground
regions to detection hypotheses. Barinova et al. (2010) pro-
posed a probabilistic formulation of the generalized Hough
transform that prevents association of the same image evi-
dence to multiple person hypotheses. These approaches treat
partial occlusion as nuisance and perform decisions based on
the image evidence that corresponds to the visible part of the
person. This makes them unreliable in cases of severe occlu-
sions (i.e. more than 50 % of the person occluded). Several
works have aimed at improving such weak detections using
information from additional sensing modalities (Enzweiler et
al. 2010) or by joint reasoning about people hypotheses and
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tions are shown in red and missing detections in green. One of the two
bounding boxes predicted from the two-person detection is shown with
the dotted line

3D scene layout (Wojek et al. 2011). In Wojek et al. (2011),
a bank of partial people detectors is used to generate initial
proposals that are refined based on the 3D scene layout and
temporal reasoning.

Here, we explore an alternative strategy, observing that in
crowded street scenes most occlusions happen due to over-
laps between people. Instead of using evidence from individ-
ual people that becomes unreliable in cases of severe occlu-
sion, we consider the joint evidence of both people. This
is possible because overlapping people result in character-
istic appearance patterns that are otherwise uncommon. Our
approach is related to the “visual phrases” approach (Farhadi
etal. 2011) in that we train a joint detector for the combination
of two object instances, and to Desai and Ramanan (2012)
that trains mixtures of detectors with some of the mixture
components representing appearance of typical occluders.
Our approach builds on the state-of-the-art people detector
of Felzenszwalb et al. (2010), which we extend in two ways.
First, we propose a double-person detector that simultane-
ously detects two people occluding each other and second,
we propose a joint detector that can detect both one as well
as two people due to joint training. To capture typical appear-
ance patterns of people occluding each other, we automat-
ically generate a dataset of training images with controlled
and varying degrees of occlusion. In this respect our work
is also related to recent work combining real and artificially
generated images to train people detectors (Marin et al. 2010;
Pishchulin et al. 2011).

Following the conference version of this paper (Tang et
al. 2012), several recent publications proposed approaches
for detection and tracking of occluded people (Pepik et al.
2013; Ouyang and Wang 2013; Tang et al. 2013). These
approaches differ in the way they identify the occlusion pat-
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terns and in the way they represent appearance of occluding
and occluded persons. While in Tang et al. (2012) we define
occlusion patterns based on the level of occlusion, (Pepik et
al. 2013; Ouyang and Wang 2013) and our recent publica-
tion Tang et al. (2013) propose to mine occlusion patterns
by clustering pairs of people in the training data. In Tang et
al. (2012) we combine double and single-person detections
by relying on a two-stage non-maximum suppression. As an
alternative, Ouyang and Wang (2013) propose a probabilis-
tic approach that allows us to incorporate evidence from any
single-person detector, whereas Pepik et al. (2013) directly
incorporates the appearance of an occluding person as a part
of the single-person detector. In each of these publications
the experimental results suggest that incorporating appear-
ance of the occluder into the person detector can significantly
improve the detection of the occluded people.

This paper extends our conference paper (Tang et al. 2012)
in several ways. As a first extension we integrate our joint
detector into two state-of-the-art people tracking approaches
(Andriyenko and Schindler 2011; Pirsiavash et al. 2011) and
evaluate its performance in the context of people tracking in
crowded scenes. In our evaluation we use the standard metrics
for multi-target tracking (Bernardin and Stiefelhagen 2008),
which permits direct comparison to prior work. Our analysis
shows that our joint people detector significantly improves
recall of both tracking systems and also results in improved
tracking accuracy. As a second extension over (Tang et al.
2012) this paper includes a set of additional experiments that
compares the performance of the joint detector to various
baseline methods which rely on the detection of single peo-
ple. Specifically we compare (1) to single-person detectors
with different non-maximum suppression parameters, (2) to
a detector that predicts positions of occluding and occluded
people from the positions of a single-detector bounding box,
and (3) to a detector that is composed of the single-person
detection components of the joint detector. We show that
our joint person detector improves over all these baselines.
Finally, we also extend the conference version of the paper
with additional illustrations and clarifications that provide
more insight into the workings of our approach.

3 Double-Person Detector

Our double-person detector builds on the DPM approach
(Felzenszwalb et al. 2010), arguably one of the most powerful
object detectors today. The key concept of our double-person
model is that person/person occlusion patterns are explicitly
used and trained to detect the presence of two people rather
than to treat these occlusions as distractions or nuisance as
it is typically done. Specifically, our double-person detector
shares the deformable parts across two people which belong
to the same (two-person) root filter. In that way localizing

Fig. 2 Visualization of the deformable parts of the double-person
detector. (a, c) are the test images from MPII-2person dataset. (b, d)
are the visualization of the parts locations

one person facilitates the localization of the counterpart in
the presence of severe occlusions and the deformable parts
allow us to improve the localization accuracy of both peo-
ple using the above mentioned occlusion patterns whenever
appropriate (cf. Fig. 2). For this we build on the DPM frame-
work to detect the presence of two people and to predict the
bounding boxes of both people, the occluding person as well
as the occluded person.

3.1 Double-Person Detector Model

In full analogy to DPMs, our double-person detector uses
a mixture of components. Each component is a star model
consisting of a root filter that defines the coarse location of
two people and n deformable part filters that cover repre-
sentative parts and occlusion patterns of the two people. The
vector of latent variables is given by z = (¢, po, .-, Pn),
with ¢ denoting the mixture component and p; specifying
the image position of the part and feature pyramid level /;.
The score of a double-person hypothesis is obtained by the
score of each filter at the latent position p; (unary poten-
tials) minus the deformation cost between root position and
part position (pairwise potentials). As in Felzenszwalb et al.
(2010), the un-normalized score of a double-person hypothe-
sis is defined by (8, W (x, z)), where vector $ is a concatena-
tion of the root and all part filters and the deformation para-
meters, and W (x, z) is the stacked HOG features and part
displacement features of sample x. W(x, z) is zero except
for a certain component c¢. Therefore, we obtain the con-
struction (8, W(x, z)) = (B¢, ¥.(x, z)). Detection in the test
image is done by maximizing over the latent variables z:
arg max ;) (8, ¥ (x, 2)) (Fig. 3).

3.2 Model Training

Let D = ({x1, y1), ..., {(xn, yn)) denote a set of positive
and negative training examples, with x; corresponding to a
bounding box enclosing either a pair of people or a back-
ground region and y; € {—1, 1}.

Given this training set we learn the model parameters f
using latent SVM (Felzenszwalb et al. 2010). This involves
iteratively solving the quadratic program:
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Fig. 3 Examples of synthetically generated training images for different levels of occlusion: 5-10 % (a), 20-30 % (b), 40-50 % (c) and 70-80 %
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and optimizing for the values of latent parameters z. The
optimization objective in Eq. 1 includes a regularizer that
has been proposed in Girshick et al. (2010) and is slightly
different from the one in Felzenszwalb et al. (2010). Instead
of penalizing the norm of the whole parameter vector, it only
penalizes maximum over the norms of the parameters of each
component. The purpose of such regularization is to prevent
one single component from dominating the model, and to
make the scores of individual components more compara-
ble. We solve the quadratic program with stochastic gradient
descent and employ data-mining of hard-negative examples
after each optimization round as proposed in Felzenszwalb
et al. (2010).

3.3 Initialization

The objective function of the latent SVM is non-convex,
which makes the training algorithm susceptible to local min-
ima. Instead of relying on the bounding box aspect ratio as
in Felzenszwalb et al. (2010), we initialize our model using
different occlusion levels, which we found to produce slightly
better results compared to standard initialization. This fol-
lows the intuition that the degree of occlusion is one of the
major sources of the appearance variability and can be cap-
tured by different components. Other sources of appearance
variability such as poses of people and varying clothing are
then captured by displacement and appearance parameters of
each component. In the experiments reported below we use a
three component double-person model. The components are
initialized with the occlusion levels 5-25, 25-55, and 55—
85 %. The percentage of occlusion is defined as a percentage
of the occluded pixels in the person segmentation.

3.4 Bounding Box Predictions
Given a double-person detection we predict the bounding

boxes of individual people using linear regression. The loca-
tion of each bounding box is modelled as
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where B; is the predicted bounding box for a detection i, ¢ is
the index of the DPM component that generated the detection,
and g; (z) is a 2 *n + 3 dimensional vector that is constructed
by the upper left corners of the root filter and the n part filters
as well as the width of the root filter. ¢; is a Gaussian noise
that models deviations between the predicted and observed
location of the bounding box.

The regression coefficients «, are estimated from all posi-
tive examples of component c. For each of the model compo-
nents we estimate two separate regression models that cor-
respond to the two people in the double-person detection.
This procedure allows us to accurately localize both people
despite severe occlusions, as can be seen e.g. in Fig. 4.

3.5 Training Data Generation

Asitis difficult to obtain sufficient training data for the differ-
ent occlusion levels of our double-person detector, we syn-
thetically generate it. Figure 5 illustrates this process. For
each person we first extract the silhouette based on the anno-
tated foreground person map. Next, another single-person
image is selected arbitrarily and combined with the extracted
silhouettes. In order to generate a double-person training
dataset, we randomly select background images, 2D posi-
tions and scale parameters. Each synthetic image provides
an accurate occlusion ratio estimated from the two persons’
silhouettes. For the experiments reported below we gener-
ate 1,300 double-person training images from the 400 TUD
training images (Andriluka et al. 2008). For the synthetic
dataset we uniformly sample occlusion levels between 0 and
85 %, and scale factors between 0.9 and 1.1.

3.6 Experimental Study

In order to explicitly compare single-person and double-
person detector performance for person/person occlusion
scenarios, we captured several video sequences and con-
structed a new double-person dataset (MPII-2Person) where
the 850 double-person images are categorized by different
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Fig. 5 Procedure to synthetically generate training images for our
double-person detector. (a) background person, (b) foreground person,
(c) foreground person map, (d) generated synthetic training image

occlusion levels' (see Fig. 6). The person segmentation and
occlusion level are estimated from 2D truncated quadrics
which are constructed from stick-man annotation.

3.6.1 Single-Person Detector

Figure 7a shows the performance of the standard DPM single-
person detector on our double-person dataset. In case of little
partial occlusion (red curve, below 5 %), the single-person

! The training and test datasets are available at www.d2.mpi-inf.mpg.
de/datasets

detector obtains good performance both in terms of recall
(up to 90 % recall) and high precision. However, the single-
person detector already misses many people when the occlu-
sion level is increased up to 15 % (blue curve, maximal recall
below 80 %), and further decreases in the presence of more
occlusion. When the occlusion level is 35 % or more, the
achieved recall is only slightly above 50 %, indicating that in
most cases only one of the two people is correctly detected.

3.6.2 Double-Person Detector

Figure 7b shows the performance of our proposed double-
person detector. The detector reaches nearly 100 % recall
with very few false positives, which is a significant improve-
ment over the single-person detector. Interestingly, the per-
formance for the lowest occlusion level (red curve, up to 5 %)
is lower than for the levels with more occlusion, which can be
explained by the difficulty to differentiate a single person that
does not occlude a second person from the case that a person
occludes a second person significantly (e.g. 80 %) (for an
example of 80 % occlusion see Fig. 4). Overall the detection
precision is very high for all but the highest occlusion level
(black dashed line, up to 85 %).

We now compare the double-person detector with two
baselines that rely on the single-person detector. The first
baseline is obtained by varying the threshold t used in
the non-maximum suppression (NMS) step. This parame-
ter determines the minimum value of the “intersection over
union” ratio required for one detection bounding box to sup-
press the other. The results of this experiment are shown in
Fig. 8. For each detector we plot the area under the recall-
precision curve (AUC) for the range of occlusion levels. For
low occlusion levels, the detectors with low NMS thresh-
olds perform reasonably well, however, their performance
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Fig. 6 Example images from the MPII-2Person dataset. The levels of occlusion in (a—d) are 30, 50, 70 and 80 % respectively

degrades quickly for higher levels of occlusion. Increasing
the NMS threshold improves performance for the higher
occlusion levels because the larger number of candidate
detections survive NMS, but the performance for the low
occlusion levels drops due to an increased number of false
positives. The first observation from this experiment is that
there is no single NMS threshold which works equally well
for all levels of occlusion. The second observation is that
our two-person detector (blue dashed line) outperforms all
single-person detectors above.

Our second baseline is obtained by predicting the detec-
tion bounding boxes for two people based on the output of
the single-person detector. To that end the bounding box of
the second person is randomly generated in the vicinity of
the single-person detection. We purposefully choose a small
value of non-maximum suppression parameter 7 = 0.3 to
prune the detections close to each other and to prevent con-
flicts between generated and detected bounding boxes. The
result of this experiment corresponds to the “Predict double
from single” curve in Fig. 8. The performance is similar or
better than single-person detectors for a full range of NMS
thresholds. Recall that the MPII-2Person dataset used in this
experiment contains only images of two people walking close
to each other, and good performance of the second baseline
is not surprising. The performance of the second baseline
however drops on images with small amounts of occlusion
(less than 15 %). Note that our double-person detector also
clearly improves over the second baseline.

@ Springer

From these experiments we conclude that our double-
person detector is much more robust than the single-person
detector and obtains excellent performance both in terms of
recall and precision, even for the heavy occlusion cases.
Single person localization (bounding boxes prediction) is
not a trivial task, especially for intermediate occlusion level
cases (30 ~ 60 %), because we observe fair evidence from
both persons, which can be distracting for single bounding
box localization. However, the results show that our double-
person detector accurately and robustly predicts the single
bounding box for the above mentioned case as well. Fig-
ure 4 shows comparative qualitative results. For the same test
examples, our double-person detector correctly detects the
position of two persons and predicts their respective bound-
ing box with high accuracy.

4 Multi-person Detection

The previous section has shown that our double-person detec-
tor can indeed outperform a single person detector when
people occlude each other by 25 % or more. However,
the employed dataset was somewhat idealistic as it con-
tained exactly two people that occluded each other at various
degrees. In realistic datasets we will have both single people
that are fully visible and two and more people that occlude
each other. This section therefore proposes a detector that
combines both single and two-person detectors into a single
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Fig. 7 Detection performance of single- and double-person detectors
for different occlusion levels on the MPII-2Person dataset

model that is jointly trained. The model is again built upon the
DPM-approach where the role of the different components
is now to differentiate between single and two people as well
as between different occlusion levels among two people.

4.1 Joint Person Detector

We jointly train single- and double-person detectors by rep-
resenting them as different components of the DPM. We allo-
cate three components for the double detector and three com-
ponents for the single-person detector after mirroring results
in a 12 component DPM model. Similarly to Sect. 3 we ini-
tialize the double-person components with training examples
corresponding to gradually increasing levels of occlusion.
For the single-detector components we rely on the standard
initialization based on the bounding box aspect ratio. During
learning we allow training examples to be reassigned to other
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Fig. 8 Comparison of the double-person detector with various base-
lines based on the single-person detector on the MPII-2Person dataset.
See Fig. 7 for the definition of occlusion levels (x axis)

components of the DPM model, but prevent assignments of
two-person examples to one-person components and vice
versa. We found this to be important to improve detection
of two people in cases of particularly strong occlusion that
are otherwise often incorrectly handled by the single-person
components.

The performance of the joint detector strongly depends on
its ability to distinguish between single and double-person
hypotheses, which requires the scores of single and dou-
ble person components to be comparable to each other. To
achieve such comparability we jointly optimize the parame-
ters of all detection components. The optimization procedure
used for learning the DPM parameters described in Sect. 3
couples the training of each component in several ways. The
components are jointly regularized by penalizing the maxi-
mum over the norms of the component parameters (cf. Eq. 1).
In addition the training examples can be reassigned between
components after each optimization round, and hard nega-
tive mining and optimization stopping criterion depends on
the full model and not on an individual component. Even
though we fix the assignment of training examples to single
and double-person components, the other coupling mech-
anisms remain. The empirical evidence suggests that such
joint training makes the output scores of each component
comparable (Girshick et al. 2010). In this paper we follow
this standard practice, but refer to our recent work (Tang et al.
2013) where we further address this issue by reformulating
our joint detector using structural SVM framework and mod-
ifying the loss function to penalize detection of single people
with double-person components and vice versa. In Fig. 9 we
visualize the root and part filters of the joint detector. Note
the substantial differences between the filters of the single
and double-person components.

@ Springer
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Fig. 9 Visualization of the root filters (first row), part filters (second
row) and mean part locations and detection bounding boxes (third row)
of the joint person detector. The first three columns correspond to the
single-person and the last three columns to the double-person compo-
nents

4.1.1 Training Data

We train our joint detector on the combination of 1-person
and 2-person training sets described in Sect. 3, but slightly
modify the initial assignment of images to the DPM compo-
nents. We assign training images with less than 5 % occlu-
sion to the single-person training dataset, because in that case
the single-person detector already obtains high performance
for both people. We initialize the three double-person DPM
components with images corresponding to occlusion levels:
5-25,25-55, and 55-75 %.

4.1.2 Non-maximum Suppression (NMS)

The NMS in the joint detector is more complicated than in
the standard DPM since we have bounding box predictions
from two different types of detections (single and two-person
detections) as well as strongly overlapping bounding box pre-
dictions from our two-person components. We thus imple-
ment NMS in two steps. The first step is performed prior to
bounding box prediction and already removes a large portion
of multiple detections on the same person. In this first step
two-people detections and single-person detections compete
and suppress each other depending on the respective score.
The remaining multiple detections are either due to multiple
two-person detections in cases when more than two people
appear close to each other (e.g. rightmost three people in
the fourth image in Fig. 1) or detections with significantly
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different bounding box aspect ratios. Given the reduced set
of hypotheses after the first round of NMS, we perform
bounding box prediction followed by the second round of
NMS. This second step corresponds to the NMS typically
performed for DPM (Felzenszwalb et al. 2010). The sec-
ond round is done independently for single-person and two-
person components of DPM, as we found that one-person
detections may incorrectly suppress two-person detections
otherwise. During NMS of detections from the two-person
components we additionally prevent two bounding boxes
predicted from the same double-person detection from sup-
pressing each other. As an illustrative example, we could
correctly detect all three people in the fourth image on Fig. 1
despite strong occlusion of the middle person. In that case
the single-person detections were predicted from two double-
person detections and multiple detections on the middle per-
son were correctly removed by the second stage of the non-
maximum suppression.

4.2 Results

We evaluate the performance of our joint detector on two
publicly available datasets, “TUD-Pedestrians” and “TUD-
Crossing”, originally introduced in Andriluka et al. (2008).
“TUD-Pedestrians™ contains 250 images of typical street
scenes with 311 people all of which are fully visible. “TUD-
Crossing” contains a sequence of 201 images with 1,008
annotated people that frequently occlude each other par-
tially or even fully. To capture the full range of occlusions
we extended the annotations of the “TUD Crossing” dataset
to include also strongly occluded people, which resulted in
1,186 annotated people.

We begin our analysis with the “TUD-Pedestrians” dataset.
Detection results are shown in Fig. 10a as recall-precision
curves. Since this dataset does not contain any occluded peo-
ple our double-person detector (Sect. 3) generates numerous
false positives, interpreting each person as a pair of peo-
ple in which one of the persons is severely occluded. As
expected the single-person detector performs well on this
dataset, achieving an equal error rate (EER) of 87 %. The
joint detector slightly improves over the single person detec-
tor achieving 90.5 % EER. This result is a bit surprising
because the joint detector is trained to solve a more difficult
problem of detecting both fully visible and partially occluded
people. We attribute the improvement of the joint detector to
the training set that in addition to real images has been aug-
mented with artificial training examples (c.f. Sect. 3). This
parallels the recent results on using artificially generated data
for training of people detection and pose estimation models
(Shotton et al. 2011; Pishchulin et al. 2011).

The evaluation on “TUD Pedestrian” demonstrates that
integrating single- and double-person detectors in the same
model does not result in a performance penalty in the case
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Fig. 10 Detection performance on TUD-Pedestrians (a) and TUD-
Crossing (b)

when people are fully visible. In order to assess the joint
detector in realistic scenes that contain both occluded and
fully visible people we evaluate its performance on the
TUD-Crossing dataset. Quantitative results are shown on
Fig. 10b and a few example images in Fig. 1 (bottom row).
First we compare the performance of single and double-
person detectors, which achieve approximately the same
EER of 76 %. The double-person detector achieves higher
recall compared to the single-person detector, being able to
detect even strongly occluded people. However, the precision
of the double-person detector suffers from multiple detec-
tions of fully visible people. The single-person detector pro-
duces fewer false positive detections, but also fails to detect
occluded people, saturating at a recall of 76 %. Finally, the
joint detector significantly improves over both single and
double person detectors, achieving an EER of 83 %. In order

to gain further insight into the workings of our approach, we
conduct an additional experiment in which we measure the
performance of the detector composed of the single-person
components of the joint detector. The results are also shown in
Fig. 10b. The single-components detector performs slightly
better than the single-person detector (76 vs. 77 % EER), but
does not reach the performance of the complete joint detector
(77 vs. 83 % EER).

Note that while demonstrating overall improvement, the
joint detector has a somewhat lower performance in the
high precision area compared to the single person detector.
Inspecting the false positives of the joint detector with high-
est scores reveals that most of them correspond to cases when
one-person and two-person components of the detector fired
simultaneously on the same pair of people, but these detec-
tions where sufficiently far from each other to persist through
the non-maximum suppression step (e.g. false positive detec-
tion in the first image on Fig. 1).

Finally, we compare the performance of our approach with
the Hough transform based detector of Barinova et al. (2010),
which is specifically designed to be robust to partial occlu-
sions. The authors of Barinova et al. (2010) kindly provided
us their detector output (in terms of bounding boxes) which
allows to compare their result on our full ground-truth anno-
tations, making these results directly comparable to the rest
of our experiments (Fig. 10b). The approach of Barinova et
al. (2010) improves over the single-person detector in terms
of final recall, but loses some precision, likely because their
local features are rather weak compared to the discrimina-
tively trained DPM model. Our joint model outperforms the
approach of Barinova et al. (2010) by a large margin. Fig-
ure 1 shows a few example frames from the “TUD-Crossing”
sequence, comparing our joint detector with the results of
Barinova et al. (2010). Note that our approach is able to
correctly detect occluded people in the presence of very lit-
tle image evidence (e.g. three pairs of people in the second
image), whereas the approach of Barinovaetal. (2010) fails in
such cases. At the same time our approach also correctly han-
dles detection of single people (e.g. second and third images).

5 Multi-person Tracking

In this section we compare the performance of the single-
person and the joint detectors (Sect. 4) in the context of mul-
tiple people tracking. To that end we rely on two recently pro-
posed tracking approaches (Andriyenko and Schindler 2011;
Pirsiavash et al. 2011). Both of them employ the tracking-by-
detection strategy and require output of the person detector as
a prerequisite for tracking. In the following we first introduce
these approaches and then discuss the experimental results.
The approach of Andriyenko and Schindler (2011) formu-
lates tracking as a continuous energy minimization problem.

@ Springer



Int J Comput Vis

Given a set of person detections in each frame it recovers
tracks of people by minimizing an objective function of the
form

E(X) = Eops + aEdyn + IBEexc + VEper + 8Eregv (3)

where X is a set of tracks, E,ps is a data term that encour-
ages tracks that align well with the person detections, and
the terms Egyy, Ecxc, and E ., encode prior assumptions on
the tracking trajectories that encourage smooth and persistent
trajectories without collisions. The term E, ., is a regularizer
that penalizes the total number of trajectories. All terms in
Eq. 3 depend on X, and we omit explicitly stating this depen-
dency for the brevity of notation. We refer to Andriyenko and
Schindler (2011) for the detailed description of the terms in
Eq. 3.

The approach of Andriyenko and Schindler (2011) is par-
ticularly suited for our task of evaluating different detectors
in the context of tracking-by-detection because it relies on
a clean formulation that directly accepts object detections
as input, and only depends on a handful of free parameters.
The only adaptation needed to integrate a particular object
detector into the tracking system is to estimate the parame-
ters o, B, ¥ and § in Eq. 3. In our evaluation we rely on the
publicly available implementation provided by the authors?,
but re-estimate the parameters of the objective function by
performing a grid search independently for each of the detec-
tors.

As second tracking approach in our experiments we use
the multi-person tracker from Pirsiavash et al. (2011). Sim-
ilarly to (Andriyenko and Schindler 2011) this approach
recovers tracks of multiple people by minimizing the joint
objective function that combines the people detection likeli-
hood with the smoothness prior on the track locations. The
optimization is performed using an iterative greedy shortest-
path algorithm. At each iteration it finds the best track and
removes its hypotheses from the search space. The proce-
dure is repeated as long as the newly found tracks have a
negative cost and therefore decrease the value of the overall
objective function. The objective function optimized in Pir-
siavash et al. (2011) is conceptually similar to the one used in
Andriyenko and Schindler (2011), but differs in the details of
the likelihood and motion smoothness terms. The approach
of Pirsiavash et al. (2011) directly links the people detec-
tions across frames, whereas the approach of Andriyenko
and Schindler (2011) has a soft constraint that pulls the tracks
towards detections but permits slight deviations. Moreover,
the approach of Andriyenko and Schindler (2011) relies on a
constant velocity prior that is more suitable for tracking walk-
ing pedestrians compared to constant position prior used in
Pirsiavash et al. (2011). Finally, Andriyenko and Schindler
(2011) explicitly discourage multiple explanations of the

2 http://www.gris.tu-darmstadt.de/~aandriye

@ Springer

image detections by several tracks via the exclusion term,
whereas Pirsiavash et al. (2011) achieves this using non-
maximum suppression. Note that the tracker of Pirsiavash et
al. (2011) is also conceptually similar to the tracker used in
the conference version of this paper (Tang et al. 2012). In both
cases the tracking can be interpreted as a MAP estimation in
the hidden Markov model, which is performed by iterative
greedy procedure that finds one track at a time. The tracker
in Pirsiavash et al. (2011) is somewhat more advanced, as it
incorporates occlusion handling by allowing tracks that skip
several consecutive frames with low detection likelihood. In
our experiments we rely on the publicly available implemen-
tation of Pirsiavash et al. (2011) and use the default tracking
parameters provided by the authors?.

We quantify the tracking performance using the CLEAR
MOT metrics (Bernardin and Stiefelhagen 2008). The track-
ing results are evaluated with respect to the following char-
acteristics: recall, precision, multi-object tracking accuracy,
multi-object tracking precision, and the number of mostly
tracked and mostly lost targets. Recall and precision are com-
puted in the same way as in the evaluation of the detection per-
formance, but using the ground truth targets and the tracker
outputs. Multi-object tracking accuracy (MOTA) is the com-
bined metric that takes missed targets, false alarms and iden-
tity switches into account. Multi-object tracking precision
(MOTP) is computed using the average distance between the
predicted track and the ground truth trajectory. MT is the
absolute number of mostly tracked trajectories, and ML is
the absolute number of mostly lost trajectories. The hit/miss
threshold is 50 % overlap between the ground truth targets
and the tracker outputs in 2D.

We evaluate the full system composed of either our single-
person or our joint detector and one of the tracking algorithms
(Andriyenko and Schindler 2011; Pirsiavash et al. 2011) on
the TUD-Crossing dataset. The results are shown in Table 1.

First, we present the results obtained with the tracker of
Andriyenko and Schindler (2011). The single-person detec-
tor significantly improves over the result of Andriyenko and
Schindler (2011) that was obtained using a detector from
Walk et al. (2010) based on the HOG and optical flow fea-
tures. The best result is obtained using our joint detector,
that improves over the single-person detector both in terms
of recall, and with respect to MOTA/MOTP tracking met-
rics. Figure 11 shows several example frames visualizing the
tracking results. Note that the tracker based on the joint detec-
tor is able to track people even under significant partial occlu-
sions (e.g track 2 in the first three images), and is able to track
subjects for longer periods of time (e.g track 10 of the joint
detector (third row) corresponds to two tracks of the single-
frame detector (second row)). Tracking based on the output
of the joint detector also results in fewer identity switches (16

3 http://people.csail. mit.edu/hpirsiav
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Table 1 2D tracking evaluation on the TUD-Crossing dataset

Method Recall Precision MOTA (%) MOTP (%) MT ML
Approach of Andriyenko and Schindler (2011) 69.8 92.4 63.0 75.5 7 1
Our single-person detector, tracking method of Andriyenko and Schindler (2011)  79.9 96.2 752 71.7 7 0
Our single-person detector, tracking method of Pirsiavash et al. (2011) 68.3 98.4 63.3 76.3 5 0
Our joint detector, tracking method of Pirsiavash et al. (2011) 71.7 96.2 70.7 77.1 6 0

The best results in competition are highlighted in bold

Single-person det. Result from [2]

Joint det.

Fig. 11 Tracking results on the TUD-Crossing dataset obtained with the approach of Andriyenko and Schindler (2011) (top row), our single-person
detector (middle row) and our joint detector (bottom row). Colors and numbers indicate tracks corresponding to different people

for the single-person detector vs. 11 for the joint detector).
Inspection of the output of the single-person detector reveals
that in the case of strong partial occlusions the detection
output often jumps between occluder and occluded subjects,
which results in frequent identity switches in corresponding
track. In contrast the joint detector typically includes detec-
tions of both subjects into the hypotheses set, which facili-
tates more consistent tracking.

Note that although the joint detector achieves the best
result, the improvement over the single-person detector is
only 3.2 % of MOTA. This is somewhat surprising given the
large improvement of the joint detector on the detection task
(cf. Fig. 10). This result could be due to the particular choice
of the objective function which contains the term E,,. which
explicitly penalizes tracks which collide with each other in
the image space. In the case of strong partial occlusions tracks
of both subjects might be rather close to each other, where
this exclusion term is likely to be suboptimal. The tracking
algorithm does not take advantage of the additional infor-
mation contained in the output of the joint detector that is

able to explicitly label detections as a pair of occluded and
occluding people. We envision that a more careful integra-
tion of the joint detector into the tracking framework could
lead to larger performance gains and leave such integration
to the future work.

Next, we evaluate our proposed detectors in combina-
tion with the tracking algorithm of Pirsiavash et al. (2011).
The results are shown in the last two rows of the Table 1.
The tracking results obtained both with single and joint-
person detectors are somewhat lower than with the tracker
of Andriyenko and Schindler (2011). The large difference
in tracking recall is particularly striking. For example, in
the case of the single-person detector we obtain 79.9 % for
the tracker of Andriyenko and Schindler (2011) and 68.3 %
for the tracker of Pirsiavash et al. (2011). The difference
could be due to a more sophisticated design of the objective
function in Andriyenko and Schindler (2011) that explicitly
encourages longer tracks by incorporating the persistence
term. Importantly, for both trackers we achieve noticeable
improvement from substituting the single-person with the
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joint-person detector. The improvement for the tracker of Pir-
siavash et al. (2011) is particularly pronounced. For example,
the joint detector is able to improve the aggregated track-
ing accuracy measure MOTA from 63.3 to 70.7. We hypoth-
esize that the improvement for Pirsiavash et al. (2011) is
larger because it operates by linking a discrete set of detec-
tion hypotheses over time and is therefore more sensitive
to missing detections. In contrast the tracker of Andriyenko
and Schindler (2011) only uses detections as observations for
tracking and explicitly reasons about continuous trajectories,
which allows it to better handle gaps in detections.

6 Conclusion

Occlusion handling is a notorious problem in computer vision
that typically requires careful reasoning about relationships
between objects in the scene. Building on the state-of-the-
art DPM detector (Felzenszwalb et al. 2010), we developed
a joint model that is trained to detect single people as well
as pairs of people under varying degrees of occlusion. In
contrast to standard people detectors that treat occlusions
as nuisance and degrade quickly in the presence of strong
occlusions, our detector is specifically trained to capture
various occlusion patterns. Our joint detector significantly
improves over a single-person detector when detecting peo-
ple in crowded street scenes, without losing performance
on images with one person only. On the challenging TUD-
Crossing benchmark our joint detector improves the previ-
ously best result of Barinova et al. (2010) from 73 to 83 %
EER. Finally, we demonstrated the effectiveness of our joint
detector as a building block for tracking-by-detection. We
envision that our approach can be applicable to detection of
multiple people in various domains (e.g. surveillance videos
or sports scenes) and can be used as a building block for
tracking-by-detection, pose estimation, and activity recogni-
tion in multi-people scenes.
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